CAUTION ON USING PRODUCTIVITY OR AGE RATIOS ALONE FOR POPULATION INFERENCES

by
James W. Grier, Zoology Department
North Dakota State University
Fargo, North Dakota 58105

One frequently sees published statements or hears that a population is declining because reproduction is decreasing or because age ratios are changing. Examples are easy to find; I deliberately have not singled out any specific instances here. The conclusion "declining population" might be true, but it also might not be. Such a conclusion does not necessarily follow from the observed reproductive or age-ratio changes unless other characteristics of the population, such as time-specific mortality rates, remain constant. The assumption that other population characteristics remain constant is rarely stated and may be very dangerous to the interpretation.

The points I wish to make are already known to population biologists (see, e.g., C. J. Krebs, Ecology, Harper and Row, 1978, ch. 9-11; and D. B. Mertz, in: J. H. Connell et al. (eds.), Readings in Ecology and Ecological Genetics, Harper and Row, 1970, pp. 4-17). Caughley (J. Wildl. Manage. 38:557-562, 1974) described the problem well: "Age ratios unsupported by other information seem to be statistics in search of an application." But the principles are not intuitive or obvious. Enough researchers, including raptor workers, are routinely trapped by them that they need to be emphasized.

To illustrate these principles I have chosen hypothetical but realistic examples using standard life-table or life-equation calculations (see Krebs, 1978, ch. 10). The computations were facilitated with a BASIC computer program (which can be used on most computers, including many small office or home models). The program is of general utility and is provided in the Appendix. Any potential users are cautioned, however, that life tables themselves can be misleading; they involve several assumptions, such as age stability and constant population characteristics. Life tables are useful for modeling, as I have done here, but they should not be used for estimating survival rates from band recoveries, a common practice in the past (see note in the program listing). The program given in the Appendix additionally assumes a constant age-specific mortality rate for all birds over one year of age and death before they reach their physiological "old-age" under normal ecological conditions.

For example proving that reproductive information alone can be misleading, consider the hypothetical situation in table 1 . In population B the rate of reproduction is only one-half that of population A, but population B is growing at a rate of 14 percent per year while population A is decreasing at a rate of 12 percent per year! If you find that hard to believe, study the table and perhaps perform the calculations youself. The reason for the seeming paradox is that higher survival (lower mortality) more than compensated for the lower reproduction in population B.

Table 2 illustrates the problem with age ratios. Again, one of the hypothetical populations is declining while the other is increasing, but the age ratios are identical! A researcher watching these two populations, perhaps Peregrine Falcons, passing on migration could not distinguish between them on the basis of age ratios. The increasing
population does so because higher reproduction is producing more first-year birds and because lowered mortality is resulting in more older birds. But the ratio of firstyear to older birds has remained the same. The point is that age ratios are difficult, if not often impossible, to interpret. It is like, in a case of simple division, trying to determine the dividend and the divisor when only the quotient is known. Caughley (1974) provides more examples.

Age ratios in the form of "catch curves" are occasionally useful in fisheries, but even they are beset with problems. They often have the advantage of strong ageclasses to help serve as markers in the population. Usually when age ratios are reliable, one does not know it unless other data are also available for comparison. But then those other data are sufficient for what one wants to know, and the age ratios are unnecessary.

Population trends can be estimated by comparing age-specific reproduction and mortality (i.e., the life-table approach) but only when both reproduction and mortality information are available or if a constant time-specific mortality rate can be assumed. The only good, clear data that I have seen in an example where reproductive changes are in fact reflected in population changes involves Paul Spitzer's Osprey data for the northeastern United States (personal communication and presentation at the 1978 RRF Annual Meeting). In addition to the presence of good data on both reproduction and the actual total size of the breeding population over a period of years, the Osprey example involves a relatively unique (for raptors) situation: a small but fairly rapidly growing population where intraspecific competition and related mortality probably have not resumed significantly. Hence the mortality rate is probably at a relatively low, constant "background" level.

In the case of Peregrine Falcons in the eastern United States (see J. J. Hickey, ed.), Peregrine Falcon Populations, Univ. of Wisconsin Press), reproduction dropped and the falcons disappeared. But the specific relationships betwen reproduction, mortality, time, and actual population changes are far from clear, and we are left with only a rough picture based on hindsight. Reproductive changes might be serious, as they apparently were for Peregrines, and we could lose a population by waiting. Or changes in reproduction might not be significant and we can make fools of ourselves and stretch credibility by rushing in and sounding alarms that are not needed. Hindsight can be painful either way. To avoid the problem of not knowing whether estimated reproductive changes are serious and having to wait for hindsight, the solution is to invest more time and effort (and money) to obtain better data for both reproduction and mortality. Trying to make inferences when you have only half the picture can be tricky. As a further safeguard for one's inferences, it helps to have, if possible, other measures of the population, such as proper sampling surveys and/or mark-recapture programs with adequate proportions of recaptures.

In summary, although age ratios and reproductive information occasionally might be useful if used alone, it is risky unless one has additional information (as in P. Spitzer's Osprey case) for a backup. Perhaps in the future after more clear examples consistently show that assumptions like constant time-specific mortality are reasonable, we can use age ratios and reproductive data alone with more confidence. But until then I urge that we proceed with caution.

Acknowledgments

I thank D. H. Johnson and H. Postovit for comments on earlier drafts of this ar-
ticle and P. Spitzer for discussions on his Osprey data.

Table 1. Hypothetical example of lowered reproduction in an increasing population.

	Population 1	Population 2
Average number young per successful nest	6	2
Average number young per adult	1.5	0.5
Age begin breeding Proportion of adult females successfully breeding	2	2
Average number of daughters per successful female	50%	50%
First-year mortality		
Annual mortality for older birds	7	1
ANNUAL RATE OF POPULATION CHANGE	70%	35%
	-24%	10%

Table 2. Age ratios in two hypothetical Peregrine Falcon populations.

Life Table Characteristics	Declining Population	Increasing Population
First-year mortality		
Annual mortality for older birds	70%	50%
Age begin breeding Breeding success rate for adult females Average number of daughters per successful female$\quad 25 \%$	20%	
\quadCALCULATED	60%	3
Average number of young per adult Maximum age (for an initial cohort of 1,000) Annual rate of population change Age ratios: first year (immature plumage) over first year ("adult" plumage)	1.15	60%

APPENDIX

```
10 PRINT
20 PRINT
3 0 ~ P R I N T ~
40 PRINT *
50 PRINT "
OO PRINT
TO PRINT
&O PRINT "OO YOU WANT INTRUDUCTORY INFCRMATICN (1=YES * 2=NO)";
90 INPUT AO
100 IF AO=2 THEN 310
```

Table 1. Hypothetical example of lowered reproduction in an incre:sing population

	Population A	Population
Average number young per	4	2
\quad successful nest	1.0	0.5
Average number young per adult Age begin breeding	2	2
Proportion of adult females	50%	50%
successfully breeding		
Average number of daughters	2	1
per successful female	65%	35%
First year motality	35%	10%
Annual mortality for older birds	-12%	$+14 \%$
ANNUAL RATE OF POPULATION CIIANCE		

Table 2. Age ratios in two hypothetical Peregrine Falcon populations.

Life Table Characteristics	Declining Population	Increasing Population
GIVEN		
First-year mortality	70\%	50\%
Annual mortality for older birds	25\%	20\%
Age of first breeding	3	3
Breeding suceess rate for adult females	60\%	60\%
Average number of daughters per successful female	1.15	1.35
CALCULATED		
Average number of young per adult	0.69	0.81
Annual rate of population change	-12\%	+3.5\%
Age ratios:		
first year (immature plumage)	32\%	32\%
over first year ("adult" plumage)	68\%	(68\%


```
130 PRINT *GIRDS -- ASSUMING A CONSTANT MORTALITY RATE FOK "
140 PRINT "INUIVIUUALS OVER ONE YEAR OF AGE AND THAT THE OIRDS"
150 PRINT "UIE BEFDRE REACHING THEIR PHYSIOLOGICAL LIMITS,"
IGO PRINT *THAT IS, FEW BIRUS DIE IN THE WILD FRUM "OLU AGE.".
170 PRINT
1OO PRINT "FOR A REFERENCE FOR SOME GF THE DTHER ASSUMPTIONS,"
1\ni0 PRINT "SYMGOLS ANU MATHEMATICS, SEE: C* J. KREUS."
200 PRINT "1978. ECOLOGY. HARPER AND FCW, PUEL. N.Y. CHAPTER 1O."
210 PRINT
220 PRINT "CAUTICN: LIFE TABLES ARE LSEFUL FOR MODELING BUT THEIF**
230 PRINT
230 PRINT
240 PRINT
250 PRINT
200 PRINT
270 PRINT
280 REM
290 REM
300 REM
310 PRINT
320 PRINT
330 INPUT
340 PRINT "NOTE: INDICATE ALL RATES GR PEFFENTAGES AS PERCENTAGES."
350 PRINT "WHAT IS YOUR ESTIMATE OF THE FIRST YEAR MORTALITY"
360 PRINT "RATE FOR ";S$;"S";
370 INPUT I
3&O PRINT "WHAT IS YOUR GUESS FOR THE ANNUAL MORTALITY"
390 PRINT "RATE OF GLDER GIRDS*:
4UO IINPUT U
410 PRINT "AT WHAT AGEZ DU YOU BLLLEVE ";SS;"S NOKNALLY"
42J PRINT "BEUIN BRELDING*:
4 3 0 ~ I N P U T ~ B ~ A , ~
4 4 0 ~ P R I N T ,
450 PRINT
4 6 0 ~ I N P U T ~ F ~
47U PRINT "WHAT IS THE ANNUAL AVERAGE NUMBEF GF FEMALE YOUNG"
490 PRINT "CAKEFULLY THIS IS USUALLY CUTAINED GY OIVIDING THE*
GOU PRINT "AVERAGE TOTAL NUMBER OF YGUNG PER FEMALEE BY 2)":
510 INPUT Y
520 PRINT
530 DIM X(75),L(75),D(75),Q(75),S(75),M(75),W(75),A(75)
540 MAT X=\angleER(75)
550 MAT L=ZER(75)
560 MAT O= LERR(75)
570 MAT U=ZER(75)
580 MAT S=ZER(75)
590 MAT W=ZE゙K(75)
600 MAT M=ZER(75)
610 FQR P=1 TO 75
620 LET X(P)=P-1
6 3 0 ~ N E X T ~ P ~
640 LET L(1)=1000
650 LET L(2)=INT(1000*(1-(I/100)))
600 FUR P=2 T0 7j
670 LET L(P+1)=INT(L(P)*(1-(0/100)))
630 IFL(P+1)=0THEN700
6YO NEXTP
70O FOR P=1 TU }7
710 LET O(P)=L(F)-L(P+1)
720 IFD(P)=0THEN740
730 NEXTP
740 FOR P=1 TO 75
750 LFL(P)=OTHEN730
760 LET Q(P)=D(P)/L(P)
770 NEXT P
730 FUR P=1 TO }7
790 LET S(P)=1-Q(P)
SOO IFL(P)=0THEN82O
dIO NEXT P
O20 FOR P=1 TO }7
330 IFX( 人)<UTHENOSSO
840 LET M(P)=(F*Y/100)*L(P)/1000
850 NEXT P
860 FOK P=1 TO }7
870 LET W(P)=X(P)*M(P)
880 IFL(P)=0THEN900
```

